Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Towards understanding retrosynthesis by energy-based models
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Towards understanding retrosynthesis by energy-based models
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Towards understanding retrosynthesis by energy-based models

            Dec 6, 2021

            Speakers

            RS

            Ruoxi Sun

            Řečník · 0 sledujících

            HD

            Hanjun Dai

            Řečník · 1 sledující

            LL

            Li Li

            Řečník · 0 sledujících

            About

            Retrosynthesis is the process of identifying a set of reactants to synthesize a target molecule. It is of vital importance to material design and drug discovery. Existing machine learning approaches based on language models and graph neural networks have achieved encouraging results. However, the inner connections of these models are rarely discussed, and rigorous evaluations of these models are largely in need. In this paper, we propose a framework that unifies sequence- and graph-based methods…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Reinforcement learning for optimization of variational quantum circuit architectures
            12:27

            Reinforcement learning for optimization of variational quantum circuit architectures

            Mateusz Ostaszewski, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Online learning in MDPs with linear function approximation and bandit feedback
            13:24

            Online learning in MDPs with linear function approximation and bandit feedback

            Julia Olkhovskaya, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Grapher: Multi-Stage Knowledge Graph Construction using Pretrained Language Models
            14:31

            Grapher: Multi-Stage Knowledge Graph Construction using Pretrained Language Models

            Igor Melnyk, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Nested Counterfactual Identification from Arbitrary Surrogate Experiments
            13:34

            Nested Counterfactual Identification from Arbitrary Surrogate Experiments

            Juan Correa, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Deep Learning: Success, Failure, and the Border between them
            29:29

            Deep Learning: Success, Failure, and the Border between them

            Shai Shalev-Shwartz, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 3 diváků, což je 0.3 %

            MultiBench: Multiscale Benchmarks for Multimodal Representation Learning
            06:20

            MultiBench: Multiscale Benchmarks for Multimodal Representation Learning

            Paul Pu Liang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021