Dec 6, 2021
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
While most classic studies of function in experimental neuroscience have focused on the coding properties of individual neurons, recent developments in recording technologies have resulted in an increasing emphasis on the dynamics of neural populations. This has given rise to a wide variety of models for analyzing population activity in relation to experimental variables, but direct testing of many neural population hypotheses requires intervening in the system based on current neural state, necessitating models capable of inferring neural state online. Existing approaches, primarily based on dynamical systems, require strong parametric assumptions that are easily violated in the noise-dominated regime and do not scale well to the thousands of data channels in modern experiments. To address this problem, we propose a method that combines fast, stable dimensionality reduction with a soft tiling of the resulting neural manifold, allowing dynamics to be approximated as a probability flow between tiles. This method can be fit efficiently using online expectation maximization, scales to tens of thousands of tiles, and outperforms existing methods when dynamics are noise-dominated or feature multi-modal transition probabilities. The resulting model can be trained at kiloHertz data rates, produces accurate approximations of neural dynamics within minutes, and generates predictions on submillisecond time scales, fast enough to serve as a component of closed-loop causal experiments.While most classic studies of function in experimental neuroscience have focused on the coding properties of individual neurons, recent developments in recording technologies have resulted in an increasing emphasis on the dynamics of neural populations. This has given rise to a wide variety of models for analyzing population activity in relation to experimental variables, but direct testing of many neural population hypotheses requires intervening in the system based on current neural state, nec…
Account · 1.9k followers
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Lin Song, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Yinglun Zhu, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Lilian Weng, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%