Privacy Amplification by Decentralization

Mar 28, 2022

Speakers

About

Analyzing data owned by several parties while achieving a good trade-off between utility and privacy is a key challenge in federated learning and analytics. In this work, we introduce a novel relaxation of local differential privacy (LDP) that naturally arises in fully decentralized algorithms, i.e., when participants exchange information by communicating along the edges of a network graph without central coordinator. This relaxation, that we call network DP, captures the fact that users have only a local view of the system. To show the relevance of network DP, we study a decentralized model of computation where a token performs a walk on the network graph and is updated sequentially by the party who receives it. For tasks such as real summation, histogram computation and optimization with gradient descent, we propose simple algorithms on ring and complete topologies. We prove that the privacy-utility trade-offs of our algorithms under network DP significantly improve upon what is achievable under LDP (sometimes even matching the utility of the trusted curator model), showing for the first time that formal privacy gains can be obtained from full decentralization. Our experiments illustrate the improved utility of our approach for decentralized training with stochastic gradient descent.

Organizer

About AISTATS 2022

AISTATS is an interdisciplinary gathering of researchers at the intersection of computer science, artificial intelligence, machine learning, statistics, and related areas. Since its inception in 1985, the primary goal of AISTATS has been to broaden research in these fields by promoting the exchange of ideas among them. We encourage the submission of all papers which are in keeping with this objective at AISTATS.

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow AISTATS 2022