Solving Marginal MAP Exactly by Probabilistic Circuit Transformations

Mar 28, 2022

Speakers

About

Probabilistic circuits (PCs) are a class of tractable probabilistic models that allow efficient, often linear-time, inference of queries such as marginals and most probable explanations (MPE). However, marginal MAP, which is central to many decision-making problems, remains a hard query for PCs unless they satisfy highly restrictive structural constraints. In this paper, we develop a pruning algorithm that removes parts of the PC that are irrelevant to a marginal MAP query, shrinking the PC while maintaining the correct solution. This pruning technique is so effective we are able to build a marginal MAP solver based solely on iteratively transforming the circuit—no search is required. We empirically demonstrate the efficacy of our approach on real-world datasets.

Organizer

About AISTATS 2022

AISTATS is an interdisciplinary gathering of researchers at the intersection of computer science, artificial intelligence, machine learning, statistics, and related areas. Since its inception in 1985, the primary goal of AISTATS has been to broaden research in these fields by promoting the exchange of ideas among them. We encourage the submission of all papers which are in keeping with this objective at AISTATS.

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow AISTATS 2022