Realizable Learning is All You Need

Jul 2, 2022



The equivalence of realizable and agnostic learnability is a fundamental phenomenon in learning theory. With variants ranging from classical settings like PAC learning and regression to recent trends such as adversarially robust and private learning, it's surprising we still lack a unified theory; traditional proofs of the equivalence tend to be disparate, and rely on strong model-specific assumptions like uniform convergence and sample compression. In this work, we give the first model-independent framework explaining the equivalence of realizable and agnostic learnability: a three-line blackbox reduction that simplifies, unifies, and extends our understanding across a wide variety of settings. This includes models with no known characterization of learnability such as learning with arbitrary distributional assumptions or general loss, as well as a host of other popular settings such as robust learning, partial learning, fair learning, and the statistical query model. More generally, we argue that the equivalence of realizable and agnostic learning is actually a special case of a broader phenomenon we call property generalization: any desirable property of a learning algorithm (e.g. noise tolerance, privacy, stability) that can be satisfied over finite hypothesis classes extends (possibly in some variation) to any learnable hypothesis class.


About COLT

The conference is held annually since 1988 and has become the leading conference on Learning theory by maintaining a highly selective process for submissions. It is committed in high-quality articles in all theoretical aspects of machine learning and related topics.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow COLT