28. listopadu 2022
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Recently, Wong et al. (2020) showed that adversarial training with single-step FGSM leads to a characteristic failure mode named catastrophic overfitting (CO), in which a model becomes suddenly vulnerable to multi-step attacks. Experimentally they showed that simply adding a random perturbation prior to FGSM (RS-FGSM) could prevent CO. However, Andriushchenko Flammarion (2020) observed that RS-FGSM still leads to CO for larger perturbations, and proposed a computationally expensive regularizer (GradAlign) to avoid it. In this work, we methodically revisit the role of noise and clipping in single-step adversarial training. Contrary to previous intuitions, we find that using a stronger noise around the clean sample combined with not clipping is highly effective in avoiding CO for large perturbation radii. We then propose Noise-FGSM (N-FGSM) that, while providing the benefits of single-step adversarial training, does not suffer from CO. Empirical analyses on a large suite of experiments show that N-FGSM is able to match or surpass the performance of previous state of-the-art GradAlign while achieving 3× speed-up.Recently, Wong et al. (2020) showed that adversarial training with single-step FGSM leads to a characteristic failure mode named catastrophic overfitting (CO), in which a model becomes suddenly vulnerable to multi-step attacks. Experimentally they showed that simply adding a random perturbation prior to FGSM (RS-FGSM) could prevent CO. However, Andriushchenko Flammarion (2020) observed that RS-FGSM still leads to CO for larger perturbations, and proposed a computationally expensive regularizer (…
Konto · 960 Follower:innen
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Sungjun Cho, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Alex Ororbia, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%