Maximizing Revenue Under Market Shrinkage and Market Uncertainty

Nov 28, 2022

Speakers

About

A shrinking market is a ubiquitous challenge faced by various industries. In this paper we formulate the first formal model of shrinking markets in multi-item settings, and study how mechanism design and machine learning can help preserve revenue in an uncertain, shrinking market. Via a sample-based learning mechanism, we prove the first guarantees on how much revenue can be preserved by truthful multi-item, multi-bidder auctions (for limited supply) when only a random unknown fraction of the population participates in the market. We first present a general reduction that converts any sufficiently rich auction class into a randomized auction robust to market shrinkage. Our main technique is a novel combinatorial construction called a winner diagram that concisely represents all possible executions of an auction on an uncertain set of bidders. Via a probabilistic analysis of winner diagrams, we derive a general possibility result: a sufficiently rich class of auctions always contains an auction that is robust to market shrinkage and market uncertainty. Our result has applications to important practically-constrained settings such as auctions with a limited number of winners. We then show how to efficiently learn an auction that is robust to market shrinkage by leveraging practically-efficient routines for solving the winner determination problem.

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2022