Nov 28, 2022
We show that deep networks that are trained to satisfy demographic parity fairness do so through a form of race or gender awareness, and that the more we force a network to be fair, the more accurately we can recover race or gender from the internal state of the network. Based on this observation, we investigate an alternative fairness approach: we add a second classification head to the network to explicitly predict the protected attribute (such as race or gender) alongside the original task. After training the two-headed network, we enforce demographic parity by merging the two heads, creating a network with the same architecture as the original network. We establish a close relationship between existing approaches and our approach by showing (1) that the decisions of a fair classifier are well approximated by our approach, and (2) that an unfair and optimally accurate classifier can be recovered from a fair classifier and our second head predicting the protected attribute. We use our explicit formulation to argue that the existing fairness approaches, just as ours, demonstrate disparate treatment and that they are likely to be unlawful in a wide range of scenarios under the US law.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker