28. listopadu 2022
Although Vision transformers (ViTs) have recently dominated many vision tasks, deploying ViT models on resource-limited devices remains a challenging problem. To address such a challenge, several methods have been proposed to compress ViTs. Most of them borrow experience in convolutional neural networks (CNNs) and mainly focus on the spatial domain. However, the compression only in the spatial domain suffers from a dramatic performance drop without fine-tuning and is not robust to noise, as the noise in the spatial domain can easily confuse the pruning criteria, leading to some parameters/channels being pruned incorrectly. Inspired by recent findings that self-attention is a low-pass filter and low-frequency signals/components are more informative to ViTs, this paper proposes compressing ViTs with low-frequency components. Two metrics named low-frequency sensitivity (LFS) and low-frequency energy (LFE) are proposed for better channel pruning and token pruning. Additionally, a bottom-up cascade pruning scheme is applied to compress different dimensions jointly. Extensive experiments demonstrate that the proposed method could save 40Although Vision transformers (ViTs) have recently dominated many vision tasks, deploying ViT models on resource-limited devices remains a challenging problem. To address such a challenge, several methods have been proposed to compress ViTs. Most of them borrow experience in convolutional neural networks (CNNs) and mainly focus on the spatial domain. However, the compression only in the spatial domain suffers from a dramatic performance drop without fine-tuning and is not robust to noise, as the…
Účet · 961 sledujících
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Jean Kaddour, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 2 diváků, což je 0.2 %
Leon Bungert, …
Pro uložení prezentace do věčného trezoru hlasovalo 2 diváků, což je 0.2 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Jaehoon Oh, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yongwei Chen, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %