Nov 28, 2022
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientViT. Extensive experiments show the superiority of EfficientViT in performance and speed on mobile devices. Our fastest model, EfficientViT-L1, achieves 79.2Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the co…
Konto · 962 Follower:innen
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Hao Mei, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Zhaohan Guo, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Bo Liu, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Yuezhi Yang, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%