Nov 28, 2022
Speaker · 0 followers
Popular object detection models generate bounding boxes in a different way than we humans. As an example, modern detectors yield object box either upon the regression of its center and width/height (center-guided detector), or by grouping paired estimated corners (corner-guided detector). However, that is not the pattern we manually label an object due to high degrees of freedom in searching centers or low efficiency of grouping corners. Empirically, humans run two steps to locate an object bounding box manually: 1) click the mouse at the top-left corner of object, and then drag the mouse to the bottom-right corner; 2) refine the corner positions to make the bounding box more precisely, if necessary. Inspired by this manual labeling process, we propose a novel human-like detector, termed as HumanLiker, which is devised as a two-stage end-to-end detector to simulate the two aforementioned. Like we humans in manual labeling, HumanLiker can effectively avert both the thorny center searching and heuristic corner grouping. Different from the mainstream detector branches, i.e., the center/corner-guided methods, the HumanLiker provides a new paradigm which integrates the advantages of both branches to balance the detection efficiency and bounding box quality. On MS-COCO test-dev set, HumanLiker can achieve 50.2Popular object detection models generate bounding boxes in a different way than we humans. As an example, modern detectors yield object box either upon the regression of its center and width/height (center-guided detector), or by grouping paired estimated corners (corner-guided detector). However, that is not the pattern we manually label an object due to high degrees of freedom in searching centers or low efficiency of grouping corners. Empirically, humans run two steps to locate an object boun…
Account · 963 followers
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Gal Dalal, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Kruno Lehman, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Shuchen Wu, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Hui Xu, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%