Nov 28, 2022
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 1 sledující
We present Myriad, a testbed written in JAX which enables machine learning researchers to benchmark imitation learning and reinforcement learning algorithms against trajectory optimization-based methods in real-world environments. Myriad contains 18 optimal control problems presented in continuous time and ranging from biology to medicine to engineering. As such, Myriad strives to serve as a stepping stone towards application of modern machine learning techniques for impactful real-world tasks. The repository also provides machine learning practitioners access to trajectory optimization techniques, not only for standalone use, but also for integration within a typical automatic differentiation workflow. Indeed, the combination of classical control theory and deep learning in a fully GPU-compatible package unlocks potential for new algorithms to arise. We present one such novel approach for use in dynamics learning and control tasks. Trained in a fully end-to-end fashion, our model leverages an implicit planning module over neural ordinary differential equations, enabling simultaneous learning and planning with unknown environment dynamics. All environments, optimizers and tools are available in the software package at <https://github.com/nikihowe/myriad>.We present Myriad, a testbed written in JAX which enables machine learning researchers to benchmark imitation learning and reinforcement learning algorithms against trajectory optimization-based methods in real-world environments. Myriad contains 18 optimal control problems presented in continuous time and ranging from biology to medicine to engineering. As such, Myriad strives to serve as a stepping stone towards application of modern machine learning techniques for impactful real-world tasks.…
Účet · 962 sledujících
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Lijun Zhang, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Shuo Chen, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Lorenzo Noci, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Robin Winter, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %