ViT-DD: Multi-Task Vision Transformer for Semi-Supervised Driver Distraction Detection

Dec 2, 2022

Speakers

About

Driver distraction detection is an important computer vision problem that can play a crucial role in enhancing traffic safety and reducing traffic accidents. This paper proposes a novel semi-supervised method for detecting driver distractions based on Vision Transformer (ViT). Specifically, a multi-modal Vision Transformer (ViT-DD) is developed that makes use of inductive information contained in training signals of distraction detection as well as driver emotion recognition. Further, a self-learning algorithm is designed to include driver data without emotion labels into the multi-task training of ViT-DD. Extensive experiments conducted on the SFDDD and AUCDD datasets demonstrate that the proposed ViT-DD outperforms the best state-of-the-art approaches for driver distraction detection by 6.5

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2022