Multi-modal GAN for 3D urban scenes

Dec 2, 2022

Speakers

About

Recently, a number of works have explored training 3D-aware Generative Adversarial Networks (GANs) that include a neural rendering layer in the generative pipeline.Doing so, they succeed in building models that can infer impressive 3D information while being trained solely on 2D images.However, they have been mostly applied to images centered around an object.Transitioning to driving scenes is still a challenge, as not only the scenes are open and more complex, but also one usually does not have access to as many diverse viewpoints. Typically only the front camera view is available.We investigate in this work how 3D GANs are amenable are for such a setup, and propose a method to leverage information from LiDAR sensors to alleviate the detected issues.

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2022