Dec 2, 2022
Speaker · 0 followers
Speaker · 0 followers
We present a high probability complexity bound for a stochastic adaptive regularization method with cubics, also known as regularized Newton method. The method makes use of stochastic zeroth, first and second-order oracles that satisfy certain accuracy and reliability assumptions. Such oracles have been used in the literature by other adaptive stochastic methods, such as trust region and line search. These oracles capture many settings, such as expected risk minimization, stochastic zeroth order optimization, and others. In this paper, we give the first high-probability iteration bound for stochastic cubic regularization and show that just as in the deterministic case, it is superior to other adaptive methods.We present a high probability complexity bound for a stochastic adaptive regularization method with cubics, also known as regularized Newton method. The method makes use of stochastic zeroth, first and second-order oracles that satisfy certain accuracy and reliability assumptions. Such oracles have been used in the literature by other adaptive stochastic methods, such as trust region and line search. These oracles capture many settings, such as expected risk minimization, stochastic zeroth order…
Account · 953 followers
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Kyungsu Lee, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Lingkai Kong, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%