Dec 2, 2022
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Recent progress in unsupervised skill discovery algorithms has shown great promise in learning an extensive collection of behaviors without extrinsic supervision. On the other hand, safety is one of the most critical factors for real-world robot applications. As skill discovery methods typically encourage exploratory and dynamic behaviors, it can often be the case that a large portion of learned skills remains too dangerous and unsafe. In this paper, we introduce the novel problem of safe skill discovery, which aims at learning, in a task-agnostic fashion, a repertoire of reusable skills that is inherently safe to be composed for solving downstream tasks. We propose Safety-Guaranteed Skill Discovery (SGSD), an algorithm that learns a latent-conditioned skill-policy, regularized with a safety-critic modelinga user-defined safety definition. Using the pretrained safe skill repertoire, hierarchical reinforcement learning can solve downstream tasks without the need of explicit consideration of safety during training and testing. We evaluate our algorithm on a collection of force-controlled robotic manipulation tasks in simulation and show promising downstream task performance with safety guarantees.Please find <https://sites.google.com/view/safe-skill> for supplementary videos.Recent progress in unsupervised skill discovery algorithms has shown great promise in learning an extensive collection of behaviors without extrinsic supervision. On the other hand, safety is one of the most critical factors for real-world robot applications. As skill discovery methods typically encourage exploratory and dynamic behaviors, it can often be the case that a large portion of learned skills remains too dangerous and unsafe. In this paper, we introduce the novel problem of safe skill…
Účet · 961 sledujících
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Ali Kavis, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Zoltan Nagy, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Hao Lu, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Jicong Fan, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Dongsung Huh, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yanchen Deng, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %