Dec 2, 2022
In off-policy reinforcement learning, an agent collects transition data (a.k.a. experience tuples) from the environment and stores them in a replay buffer for the incoming parameter updates. Storing those tuples consumes a large amount of memory when the environment observations are given as images. Large memory consumption is especially problematic when reinforcement learning methods are applied in scenarios where the computational resources are limited. In this paper, we introduce a method to prune relatively unimportant experience tuples by a simple metric that estimates the importance of experiences and saves the overall memory consumption by the buffer. To measure the importance of experiences, we use surprise and on-policyness. Surprise is quantified by the information gain the model can obtain from the experiences and on-policyness ensures that they are relevant to the current policy. In our experiments, we empirically show that our method can significantly reduce the memory consumption by the replay buffer without decreasing the performance in vision-based environments.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker