MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning

Dec 2, 2022

Speakers

About

Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning (RL) agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment-Space Response Oracles (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environment parameters and co-player policies and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player environments, spanning discrete and continuous control.

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2022