2. prosince 2022
Řečník · 0 sledujících
Although it is well known that exploration plays a key role in Reinforcement Learning (RL), prevailing exploration strategies for continuous control tasks in RL are mainly based on naive isotropic Gaussian noise regardless of the causality relationship between action space and the task and consider all dimensions of actions equally important. In this work, we propose to conduct interventions on the primal action space to discover the causal relationship between the action space and the task reward. We propose the method of State-Wise Action Refined (SWAR), which addresses the issue of action space redundancy and promote causality discovery in RL. We formulate causality discovery in RL tasks as a state-dependent action space selection problem and propose two practical algorithms as solutions. The first approach, TD-SWAR, detects task-related actions during temporal difference learning, while the second approach, Dyn-SWAR, reveals important actions through dynamic model prediction. Empirically, both methods provide approaches to understand the decisions made by RL agents and improve learning efficiency in action-redundant tasks.Although it is well known that exploration plays a key role in Reinforcement Learning (RL), prevailing exploration strategies for continuous control tasks in RL are mainly based on naive isotropic Gaussian noise regardless of the causality relationship between action space and the task and consider all dimensions of actions equally important. In this work, we propose to conduct interventions on the primal action space to discover the causal relationship between the action space and the task rewa…
Účet · 961 sledujících
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Ximing Lu, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yijing Liu, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Jiajin Li, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %