Dec 6, 2022
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
With increasing popularity of Machine Learning as a Service (MLaaS), ML models trained from public and proprietary data are deployed in the cloud and deliver prediction services to users. However, as the prediction API becomes a new attack surface, growing concerns have arisen on the confidentiality of ML models. Existing literatures show their vulnerability under model extraction (ME) attacks, while their private training data is vulnerable to another type of attacks, namely, membership inference (MI). In this paper, we show that ME and MI can reinforce each other through a chained and iterative reaction, which can significantly boost ME attack accuracy and improve MI by saving the query cost. As such, we build a framework MExMI for pool-based active model extraction (PAME) to exploit MI through three modules: “MI Pre-Filter”, “MI Post-Filter”, and “semi-supervised boosting”. Experimental results show that MExMI can improve up to 11.14With increasing popularity of Machine Learning as a Service (MLaaS), ML models trained from public and proprietary data are deployed in the cloud and deliver prediction services to users. However, as the prediction API becomes a new attack surface, growing concerns have arisen on the confidentiality of ML models. Existing literatures show their vulnerability under model extraction (ME) attacks, while their private training data is vulnerable to another type of attacks, namely, membership inferen…
Account · 952 followers
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Zi-Yi Dou, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Ke Xue, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Milan Ganai, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%