Jul 24, 2023
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Speaker · 5 followers
Speaker · 0 followers
This paper considers the problem of learning single ReLU neuron with squared loss (a.k.a., ReLU regression) in the overparameterized regime, where the input dimension can exceed the number of samples. We analyze a Perceptron-type algorithm called GLM-tron [Kakade et al. 2011], and provide its dimension-free risk upper bounds for high-dimensional ReLU regression in both well-specified and misspecified settings. Our risk bounds recover several existing results as special cases. Moreover, in the well-specified setting, we also provide an instance-wise matching risk lower bound for GLM-tron. Our upper and lower risk bounds provide a sharp characterization of the high-dimensional ReLU regression problems that can be learned via GLM-tron. On the other hand, we provide some negative results for stochastic gradient descent (SGD) for ReLU regression with symmetric Bernoulli data: if the model is well-specified, the excess risk of SGD is provably no better than that of GLM-tron ignoring constant factors, for each problem instance; and in the noiseless case, GLM-tron can achieve a small risk while SGD unavoidably suffers from a constant risk in expectation. These results together suggest that GLM-tron might be more preferable than SGD for high-dimensional ReLU regression.This paper considers the problem of learning single ReLU neuron with squared loss (a.k.a., ReLU regression) in the overparameterized regime, where the input dimension can exceed the number of samples. We analyze a Perceptron-type algorithm called GLM-tron [Kakade et al. 2011], and provide its dimension-free risk upper bounds for high-dimensional ReLU regression in both well-specified and misspecified settings. Our risk bounds recover several existing results as special cases. Moreover, in the we…
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Yunfan Li, …
Zhi Zhou, …
Ofir Nabati, …
Lion Schulz, …
Zhe Zeng, …
Dora Zhao, …