24. července 2023
Řečník · 0 sledujících
Řečník · 0 sledujících
We present AIRS: **A**utomatic **I**ntrinsic **R**eward **S**haping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL). More specifically, AIRS selects shaping function from a predefined set based on the estimated task return in real-time, providing reliable exploration incentives and alleviating the biased objective problem. Moreover, we develop an intrinsic reward toolkit to provide efficient and reliable implementations of diverse intrinsic reward approaches. We test AIRS on various tasks of Procgen games and DeepMind Control Suite. Extensive simulation demonstrates that AIRS can outperform the benchmarking schemes and achieve superior performance with simple architecture.We present AIRS: **A**utomatic **I**ntrinsic **R**eward **S**haping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL). More specifically, AIRS selects shaping function from a predefined set based on the estimated task return in real-time, providing reliable exploration incentives and alleviating the biased objective problem. Moreover, we develop an intrinsic reward toolkit to provide efficient and reliable implementati…
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího