Jul 24, 2023
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Speaker · 2 followers
Causal disentanglement seeks a representation of data involving latent variables that are related via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct models that cannot be distinguished. Conversely, we show that a single intervention on each latent variable is sufficient for identifiability. Our proof uses a generalization of the RQ decomposition of a matrix that replaces the usual orthogonal and upper triangular conditions with analogues depending on a partial order on the rows of the matrix, with partial order determined by a latent causal model. We corroborate our theoretical results with a method for causal disentanglement. We show that the method accurately recovers a latent causal model on synthetic and semi-synthetic data and we illustrate a use case on a dataset of single-cell RNA sequencing measurements.Causal disentanglement seeks a representation of data involving latent variables that are related via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct mo…
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Kenny Young, …
Chen Cai, …
Shiming Chen, …
Zhen Wang, …
Peng Xu, …