Data Structures for Density Estimation

Jul 24, 2023

Speakers

About

We study statistical/computational tradeoffs for the following density estimation problem: given k distributions v_1, ..., v_k over a discrete domain of size n, and sampling access to a distribution p, identify v_i that is "close" to p. Our main result is the first data structure that, given a sublinear (in n) number of samples from p, identifies v_i in time sublinear in k. We also give an improved version of the algorithm of Acharya et al. (2018) that reports v_i in time linear in k. The experimental evaluation of the latter algorithm shows that it achieves a significant reduction in the number of operations needed to achieve a given accuracy compared to prior work.

Organizer

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2023