Jul 24, 2023
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Despite the success of Random Network Distillation (RND) in various domains, it was shown as not discriminative enough to be used as an uncertainty estimator for penalizing out-of-distribution actions in offline reinforcement learning. In this paper, we revisit these results and show that, with a naive choice of conditioning for the RND prior, it becomes infeasible for the actor to effectively minimize the anti-exploration bonus and discriminativity is not an issue. We show that this limitation can be avoided with conditioning based on Feature-wise Linear Modulation (FiLM), resulting in a simple and efficient ensemble-free algorithm based on Soft Actor-Critic. We evaluate it on the D4RL benchmark, showing that it is capable of achieving performance comparable to ensemble-based methods and outperforming ensemble-free approaches by a wide margin.Despite the success of Random Network Distillation (RND) in various domains, it was shown as not discriminative enough to be used as an uncertainty estimator for penalizing out-of-distribution actions in offline reinforcement learning. In this paper, we revisit these results and show that, with a naive choice of conditioning for the RND prior, it becomes infeasible for the actor to effectively minimize the anti-exploration bonus and discriminativity is not an issue. We show that this limitation…
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Shaojie Li, …
Heng Ji, …
Shion Takeno, …
Ziang Zhou, …