Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation

            Jul 24, 2023

            Sprecher:innen

            MS

            Maohao Shen

            Sprecher:in · 0 Follower:innen

            YB

            Yuheng Bu

            Sprecher:in · 0 Follower:innen

            GWW

            Gregory W. Wornell

            Sprecher:in · 0 Follower:innen

            Über

            Due to privacy, storage, and other constraints, there is a growing need for unsupervised domain adaptation techniques in machine learning that do not require access to the data used to train a collection of source models. Existing methods for multi-source-free domain adaptation (MSFDA) typically train a target model using pseudo-labeled data produced by the source models, which focus on improving the pseudo-labeling techniques or proposing new training objectives. Instead, we aim to analyze the…

            Organisator

            I2
            I2

            ICML 2023

            Konto · 657 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Non-autoregressive Conditional Diffusion Models for Time Series Prediction
            05:16

            Non-autoregressive Conditional Diffusion Models for Time Series Prediction

            Lifeng Shen, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fair and Optimal Classification via Post-Processing
            04:49

            Fair and Optimal Classification via Post-Processing

            Ruicheng Xian, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Spotlight Talks 3
            27:17

            Spotlight Talks 3

            Zhongliang Zhou, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Recent Advances in the Generalization Theory of Neural Networks *
            1:55:43

            Recent Advances in the Generalization Theory of Neural Networks *

            Tengyu Ma, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Beyond In-Domain Scenarios: Robust Density-Aware Calibration
            05:09

            Beyond In-Domain Scenarios: Robust Density-Aware Calibration

            Christian Tomani, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Random Shuffle Transformer for Image Restoration
            04:50

            Random Shuffle Transformer for Image Restoration

            Jie Xiao, …

            I2
            I2
            ICML 2023 2 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2023 folgen