Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation

            Jul 24, 2023

            Speakers

            MS

            Maohao Shen

            Řečník · 0 sledujících

            YB

            Yuheng Bu

            Řečník · 0 sledujících

            GWW

            Gregory W. Wornell

            Řečník · 0 sledujících

            About

            Due to privacy, storage, and other constraints, there is a growing need for unsupervised domain adaptation techniques in machine learning that do not require access to the data used to train a collection of source models. Existing methods for multi-source-free domain adaptation (MSFDA) typically train a target model using pseudo-labeled data produced by the source models, which focus on improving the pseudo-labeling techniques or proposing new training objectives. Instead, we aim to analyze the…

            Organizer

            I2
            I2

            ICML 2023

            Účet · 657 sledujících

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
            05:18

            A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

            Ayano Kaneda, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            A General Representation Learning Framework with Generalization Performance Guarantees
            03:07

            A General Representation Learning Framework with Generalization Performance Guarantees

            Junbiao Cui, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Formalizing Preferences Over Runtime Distributions
            04:42

            Formalizing Preferences Over Runtime Distributions

            Devon Graham, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Is RLHF More Difficult than Standard RL?
            31:04

            Is RLHF More Difficult than Standard RL?

            Chi Jin

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Differentially Private Stochastic Convex Optimization under a Quantile Loss Function
            04:21

            Differentially Private Stochastic Convex Optimization under a Quantile Loss Function

            Du Chen, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Robust Camera Pose Refinement for Multi-Resolution Hash Encoding
            05:20

            Robust Camera Pose Refinement for Multi-Resolution Hash Encoding

            Hwan Heo, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICML 2023