Jul 24, 2023
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Spiking neural networks (SNNs) with biologically inspired spatio-temporal dynamics show higher energy efficiency on neuromorphic architectures. Error backpropagation in SNNs is prohibited by the all-or-none nature of spikes. The existing solution circumvents this problem by a relaxation on the gradient calculation using a continuous function with a constant relaxation degree, so-called surrogate gradient learning. Nevertheless, such solution introduces additional smoothness error on spike firing which leads to the gradients be- ing estimated inaccurately. Thus, how to adjust adaptively the relaxation degree and eliminate smoothness error progressively is crucial. Here, we propose a methodology such that training a prototype neural network will evolve into training an SNN gradually by fusing the learnable relaxation degree into the network with random spike noise. In this way, the network learns adaptively the accurate gradients of loss landscape in SNNs. The theoretical analysis further shows optimization on such a noisy network could be evolved into optimization on the embedded SNN with shared weights progressively. Moreover, The experiments on static images, dynamic event streams, speech, and instrumental sounds show the proposed method achieves state-of-the-art performance across all the datasets with remarkable robustness on different relaxation degrees.Spiking neural networks (SNNs) with biologically inspired spatio-temporal dynamics show higher energy efficiency on neuromorphic architectures. Error backpropagation in SNNs is prohibited by the all-or-none nature of spikes. The existing solution circumvents this problem by a relaxation on the gradient calculation using a continuous function with a constant relaxation degree, so-called surrogate gradient learning. Nevertheless, such solution introduces additional smoothness error on spike firing…
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Ben Freed, …
Shaoang Li, …
Zhenyu Zhu, …
Sungyoon Lee, …
Lu Chen, …