Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: The Monge Gap: A Regularizer to Learn All Transport Maps
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            The Monge Gap: A Regularizer to Learn All Transport Maps
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            The Monge Gap: A Regularizer to Learn All Transport Maps

            Jul 24, 2023

            Speakers

            TU

            Théo Uscidda

            Řečník · 0 sledujících

            MC

            Marco Cuturi

            Řečník · 4 sledující

            About

            The goal of optimal transport (OT) theory is to characterize maps that can push-forward efficiently a probability measure onto another.While difficult, that task finds many uses in science and machine learning. Recent works have drawn inspiration from 's theorem, which states that when the ground cost is the squared-Euclidean distance, the “best” map to morph a continuous measure μ∈𝒫(ℝ^d) into another ν must be the gradient of a convex function.Such works propose, following [Makkuva+20, K…

            Organizer

            I2
            I2

            ICML 2023

            Účet · 657 sledujících

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Learning discrete optimization: Loss functions and graph neural networks
            29:26

            Learning discrete optimization: Loss functions and graph neural networks

            Stefanie Jegelka

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            HiC2Self: Self-supervised Hi-C contact map denoising
            16:12

            HiC2Self: Self-supervised Hi-C contact map denoising

            Rui Yang

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 1 diváků, což je 0.1 %

            Diagnosis, Feedback, Adaptation: A Human-in-the-Loop Framework for Test-Time Policy Adaptation
            05:16

            Diagnosis, Feedback, Adaptation: A Human-in-the-Loop Framework for Test-Time Policy Adaptation

            Andi Peng, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Grounding Language Models to Images for Multimodal Inputs and Outputs
            05:11

            Grounding Language Models to Images for Multimodal Inputs and Outputs

            Jing Yu Koh, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Deep Time-index Models for Time Series Forecasting
            05:19

            Learning Deep Time-index Models for Time Series Forecasting

            Gerald Woo, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            FeDXL: Provable Federated Learning for Deep X-Risk Optimization
            05:18

            FeDXL: Provable Federated Learning for Deep X-Risk Optimization

            Zhishuai Guo, …

            I2
            I2
            ICML 2023 2 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICML 2023