28. července 2023
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
We propose a new method in which a generative network (GN) integrate into a reduced-order model (ROM) framework is used to solve inverse problems for partial differential equations (PDE). The aim is to match available measurements and estimate the corresponding uncertainties associated with the states and parameters of a numerical physical simulation. The GN is trained using only unconditional simulations of the discretized PDE model. We compare the proposed method with the golden standard Markov chain Monte Carlo. We apply the proposed approaches to a spatio-temporal compartmental model in epidemiology. The results show that the proposed GN-based ROM can efficiently quantify uncertainty and accurately match the measurements and the golden standard, using only a few unconditional simulations of the full-order numerical PDE model.We propose a new method in which a generative network (GN) integrate into a reduced-order model (ROM) framework is used to solve inverse problems for partial differential equations (PDE). The aim is to match available measurements and estimate the corresponding uncertainties associated with the states and parameters of a numerical physical simulation. The GN is trained using only unconditional simulations of the discretized PDE model. We compare the proposed method with the golden standard Marko…
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Xuyang Wu, …
Zhihui Xie, …
Sam Lobel, …
Liheng Ma, …