Jul 28, 2023
Speaker · 0 followers
Real-world adoption of deep neural networks (DNNs) in critical applications requires ensuring strong generalization beyond testing datasets. Unfortunately, the standard practice of measuring DNN performance on a finite set of test inputs cannot ensure DNN safety on inputs in the wild. In this talk, I will focus on how certified AI can be leveraged as a service to bridge this gap by building DNNs with strong generalization on an infinite set of unseen inputs. In the process, I will discuss some of our recent work for building trust and safety in diverse domains such as vision, systems, finance, and more. I will also describe a path toward making certified AI more scalable, easy to develop, and accessible to DNN developers lacking formal backgrounds.Real-world adoption of deep neural networks (DNNs) in critical applications requires ensuring strong generalization beyond testing datasets. Unfortunately, the standard practice of measuring DNN performance on a finite set of test inputs cannot ensure DNN safety on inputs in the wild. In this talk, I will focus on how certified AI can be leveraged as a service to bridge this gap by building DNNs with strong generalization on an infinite set of unseen inputs. In the process, I will discuss some o…
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Liu Ziyin, …
Honglin Chen, …