10. prosince 2023
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Image restoration techniques, spanning from the convolution to the transformer paradigm, have demonstrated robust spatial representation capabilities to deliver high-quality performance. However, most of these methods, e.g., convolution and the FFN architecture of transformers, only take implicit advantage of the first-order channel interaction and have yet to fully tap into its potential for high-order modeling. To address this, our study delves into modeling channel-dimension relationships, and proposes a simple yet effective and efficient high-order channel-wise operator for image restoration. Instead of merely mimicking high-order spatial interaction, our approach offers several added benefits: Efficiency: It adheres to the zero-FLOP and zero-parameter principle, using a spatial-shifting mechanism across channel-wise groups. Simplicity: It turns the favorable channel interaction and aggregation capabilities into dot-product and convolution units with 1 × 1 kernel. Our new formulation expands the first-order channel-wise interactions seen in previous works to arbitrary high orders, generating a hierarchical receptive field akin to a Rubik's cube through the combined action of shifting and interactions. Furthermore, our proposed Rubik's cube convolution is a flexible operator that can be incorporated into existing image restoration networks, serving as a drop-in replacement for the standard convolution unit with fewer parameters overhead. We conducted experiments across a variety of low-level vision tasks, including image denoising, low-light image enhancement, guided image super-resolution, and image de-blurring. The results consistently demonstrate that our Rubik's cube operator enhances performance across all tasks. Code will be publicly available.Image restoration techniques, spanning from the convolution to the transformer paradigm, have demonstrated robust spatial representation capabilities to deliver high-quality performance. However, most of these methods, e.g., convolution and the FFN architecture of transformers, only take implicit advantage of the first-order channel interaction and have yet to fully tap into its potential for high-order modeling. To address this, our study delves into modeling channel-dimension relationships, an…
Účet · 646 sledujících
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Minghua Liu, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yu Bai, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %