10. prosince 2023
Řečník · 0 sledujících
Řečník · 1 sledující
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 1 sledující
Řečník · 0 sledujících
Řečník · 17 sledujících
Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an intervention based on historical data from individuals who received it. However, in many settings it is important to predict the effects of novel, previously unseen interventions (e.g., a newly invented drug), which most existing methods do not address. Here, we consider zero-shot causal learning: predicting the personalized effects of an intervention in the absence of any data on individuals who received it. We propose CaML, a causal meta-learning framework which formulates the personalized prediction of each intervention's effect as a task. CaML trains a single meta-model across thousands of tasks, each constructed by sampling an intervention and its recipients. By leveraging both intervention information (e.g., a drug's attributes) and individual features (e.g., a patient's history), CaML is able to predict the personalized effects of novel interventions that are unseen during training. Experimental results on real world datasets in large-scale medical claims and cell-line perturbations demonstrate the effectiveness of our approach. Most strikingly, CaML's zero-shot predictions outperform even strong baselines which have direct access to data of considered target interventions.Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an intervention based on historical data from individuals who received it. However, in many settings it is important to predict the effects of novel, previously unseen interventions (e.g., a newly invented drug), which most existing methods do not add…
Účet · 645 sledujících
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yang Yang, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %