15. prosince 2023
Řečník · 0 sledujících
In recent years the Optimal Transport (OT) based Gromov-Wasserstein (GW) divergence has been investigated as a similarity measure between structured data expressed as distributions typically lying in different metric spaces, such as graphs with arbitrary sizes. In this talk, we will address the optimization problem inherent in the computation of GW and some of its recent extensions, such as Entropic, Fused and semi-relaxed GW divergences. Next we will illustrate how these OT problems can be used to model graph data in learning scenarios such as graph compression, clustering, classification and structured prediction. Finally we will present a recent application of GW distance as a novel pooling layer in Graph Neural Networks.In recent years the Optimal Transport (OT) based Gromov-Wasserstein (GW) divergence has been investigated as a similarity measure between structured data expressed as distributions typically lying in different metric spaces, such as graphs with arbitrary sizes. In this talk, we will address the optimization problem inherent in the computation of GW and some of its recent extensions, such as Entropic, Fused and semi-relaxed GW divergences. Next we will illustrate how these OT problems can be used…
Účet · 646 sledujících
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Zhongjie Yu, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Zheng Chen, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Jiaming Guo, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Yutong Kou, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Youzhi Zhang, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %